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The paper continues our investigations of three-dimensional nonlinear resonant
fluid sloshing in a square-base basin with finite depth (mean depth/tank length
ratio h � 0.3). The sloshing is forced by a combined sway/surge resonant harmonic
excitation of the two lowest natural modes. The new studies are strongly motivated
by a discrepancy between previous quantitative theoretical results and experimental
measurements and consist of a more precise description of the strong nonlinear
amplification of higher modes. The latter is justified here by secondary resonance.
Effective frequency domains of the secondary resonance are quantified. An adaptive
asymptotic modal theory improves agreement with earlier and new experimental data
both in the transient and steady-state conditions. Local breaking and overturning near
the walls, that may lead to a ‘switch’ between distinct steady regimes, increase both
global damping and generate random-like excitation of higher modes, are extensively
discussed.

1. Introduction
The present paper is a continuation (Part 2) of Faltinsen, Rognebakke & Timokha

(2003, referred to herein) where the three-dimensional resonant fluid sloshing in a rigid
square base tank was analysed by an asymptotic modal method. The tank is forced to
oscillate horizontally with forcing frequency σ close to the lowest natural frequency
σ0,1 = σ1,0. The free-surface elevation z = f (x, y, t) in the tank-fixed Oxyz-coordinate
system is represented as

f (x, y, t) =

∞∑
i+j�1

βi,j (t)fi,j (x, y), (1.1)

where fi,j (x, y) = cos(πi(x − 0.5)) cos(πj (y − 0.5)), i + j � 1 are natural modes. The
unknown time-dependent modal functions βi,j (t) are ordered by introducing a small
parameter ε characterizing the ratio between the forcing amplitude and the breadth
(or length) of the tank. Faltinsen et al. (2000) showed by substituting (1.1) into the
original non-dimensional free boundary problem or its variational analogy that such
an ordering leads to a multidimensional system of ordinary differential equations
coupling nonlinearly a limited set of βi,j .
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Those multidimensional asymptotic modal systems resemble, but are also clearly
different from, a pseudo-spectral method (see Part 1). The asymptotic ordering
of βi,j requires physical understanding of distinct asymptotic schemes and a
quantification of frequency/amplitude domains where the order of βi,j (t) may change.
Wrongly defined asymptotic ordering will lead to physically incorrect results. Part 1
used the Narimanov–Moiseyev asymptotic ordering (Narimanov 1957; Moiseyev
1958)

β1,0 ∼ β0,1 = O
(
ε1/3

)
, β2,0 ∼ β1,1 ∼ β0,2 = O

(
ε2/3

)
, βi,j � O(ε), i + j � 3. (1.2)

that had earlier been applied successfully to similar resonant sloshing problems in a
vertical circular cylindrical basin. A simple system of ordinary differential equations
capturing nonlinear resonant waves in the asymptotic limit ε → 0, σ → σ1,0 was
derived in Part 1. The system couples nonlinearly only the nine lowest modal functions
βi,j , i + j � 3. Other modes are governed by linear modal equations and represent
a negligible contribution. The original Moiseyev formulation assumes |σ − σ1,0| =
O(ε2/3). However, the derivation of this system does not assume any asymptotic
relationship between |σ − σ1,0| and ε. As is accepted in asymptotic modal modelling,
in contrast to traditional asymptotic schemes in fluid sloshing problems, the derivation
of this system does not link |σ − σ1,0| and ε.

Possible steady solutions were classified as (i) planar (two-dimensional), (ii) diagonal
or diagonal-like and (iii) swirling waves. Frequency ranges exist with no stable
steady-state wave motions. Further, several stable steady solutions may co-exist. Even
when ε was not infinitesimally small, this classification agreed well with experiments.
However, a discrepancy between the theory and experiments as well as very steep
surface patterns and local phenomena were found for all the three-dimensional
wave regimes. We suggested that this is caused by nonlinear amplification of higher
modes due to internal (secondary) resonance. The analysis of this hypothesis for
steady-state and transient waves is performed in the present paper. It re-orders some
modes from the set βi,j , i + j � 2, to be of the same order as the dominating modal
functions β1,0(t) and β0,1(t). Since the discrepancy might be due to the relatively short
measurement time in the earlier experiments, new experimental results with longer
durations are reported in the present paper. The main new results of Part 2 consist
of:

§ 3.1: a modified concept of secondary resonance that quantifies frequency domains
(depending on ε) where steady-state motions amplify some of the higher modes. This
explains not only steep resonant waves, but also their selective appearance for distinct
steady solutions that can co-exist;

§ § 3.2–3.3: an adaptive modal approach capturing both the secondary resonance
and the Narimanov–Moiseyev asymptotics;

§ § 2,3.3: theoretical quantification of linear viscous damping rates (the papers on
viscous fluid sloshing discuss the logarithmic decrements) and their influence on
dominating modes;

§ 4: new systematic experimental results with longer time series than in Part 1.
These new results are used to validate theoretical predictions of both steady-state and
transient sloshing;

§ 4: new physical findings and limitations of modal approaches associated with
more realistic prediction of damping for both dominating and non-dominating modes,
‘random-like’ dissipation and perturbations due to local phenomena.



Three-dimensional sloshing in a square-base basin. Part 2 201

2. Statement of the problem
Resonant sloshing in a rigid open square-base tank of breadth L1 partially filled

by a perfect fluid with mean depth h is considered. The corresponding inviscid non-
dimensional formulation is presented in Part 1 (pp. 6–8). Current studies are restricted
to horizontal harmonic tank motions, i.e. ωi =Ψi = 0, i =1, 2, 3, vO3 = 0 in the notation
of Part 1. The horizontal tank accelerations are defined as v̇Oi = −σ 2Hi cos σ t, i = 1, 2,
where H1 = ε cos θ1, H2 = ε sin θ2. Here ε is the non-dimensional forcing amplitude and
(cos θi, sin θi), i = 1, 2 are the guiding vectors for the excitations in the Oxy-plane.

Our following analysis adopts the infinite-dimensional system of nonlinear ordinary
differential equations derived in Part 1 (equation (2.15)) as an auxiliary structure in
the asymptotic scheme. This system couples the full set of non-dimensional modal
functions βi,j , i + j � 1, and takes the following form:

β̈a,b
[
δiaδjb + d

1,(i,j )
(a,b),(c,d)β

c,d + d
2,(i,j )
(a,b),(c,d),(e,f )β

c,dβe,f
]
+ σ 2

i,jβi,j

+ β̇a,bβ̇c,d
[
t
0,(i,j )
(a,b),(c,d) + t

1,(i,j )
(a,b),(c,d),(e,f )β

e,f
]
+ P

(2)
i,j v̇O2 + P

(1)
i,j v̇O1 = 0, i + j � 1, (2.1)

where the summation is performed by the repeated upper-lower indexes i, j � 0, i +
j � 1. Further, σi,j = σj,i are natural frequencies defined as

σ 2
i,j = gλi,j tanh(λi,jh), λi,j = π

√
i2 + j 2, i, j � 0, i + j � 1. (2.2)

Expressions for d
1,(i,j )
(a,b),(c,d), d

2,(i,j )
(a,b),(c,d),(e,f ), t

0,(i,j )
(a,b),(c,d), t

1,(i,j )
(a,b),(c,d),(e,f ), P

(2)
i,j and S

(2)
j are given in

Part 1 (pp. 36–39, r = 1 for square cross-section). The system (2.1) captures arbitrary
progressive nonlinear activation of an infinite set of natural modes in the framework
of third-order polynomial intermodal interactions; all the modes have been formally
incorporated with the same order. The initial conditions

βi,j (t0) = β0
i,j , β̇i,j (t0) = β1

i,j , i + j � 1 (2.3)

with known constants β0
i,j and β1

i,j determine the initial fluid shape and initial velocity,
respectively.

The infinite-dimensional model (2.1) cannot be used in numerical simulations.
Further, a naive truncation of (2.1) (for instance, accounting only for βi,j , i + j � N )
may numerically fail or lead to physically inconsistent results (La Rocca, Mele &
Armenio 1997; Faltinsen & Timokha 2001). Since this is in many cases caused by
wrong intermodal ordering, an asymptotic analysis should a priori check for necessary
nonlinearities. Damping must also be considered. One way is to incorporate the linear
terms 2αi,j β̇i,j in (2.1), where αi,j are the damping rates. Faltinsen, Rognebakke &
Timokha (2004) expressed αi,j as αsurface

i,j + αbulk
i,j where

αsurface
i,j =

√
νσi,j

2

[
3

2
+

λi,j

sinh(2λi,j h)

(
1

2
− h

)]
(2.4)

is due to shear stresses on the internal tank surface and

αbulk
i,j = 2ν

[(
π4(ij )2

λ2
i,j

+ λ2
i,j

)
+

2h

λi,j

π4(ij )2 − λ4
i,j

sinh(2λi,jh)

]
(2.5)

is associated with dissipation in the fluid bulk. Here ν is the non-dimensional kinematic
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viscosity. Formulae (2.4) and (2.5) assume λi,j = O(1) which is true only for a few of
the lowest natural modes.

The hydrodynamic force can, based on Faltinsen et al. (2004), be expressed as

F1 = ml1 [−v̇O1 − ẍC] , F2 = ml1 [−v̇O2 − ÿC] , F3 = ml1 [−g0 − v̇O3 − z̈C] , (2.6)

where the second derivative of the mass centre is

ẍC = − 1

π2h

∞∑
i=1

β̈i,0 1 + (−1)i+1

i2
,

ÿC = − 1

π2hr

∞∑
i=1

β̈0,i 1 + (−1)i+1

i2
,

z̈C =
1

2h

[ ∞∑
i=1

[β̈i,0βi,0 + (β̇i,0)2 + β̈0,iβ0,i + (β̇0,i)2] +
1

2

∞∑
i,j=1

[β̈i,jβi,j + (β̇i,j )2]

]
.



(2.7)

3. Resonant amplification of higher modes and an adaptive asymptotic
modal approach

3.1. Secondary resonance in a square-base basin

Even if only the lowest modes β0,1 and β1,0 are resonantly excited, some higher natural
frequencies σi,j , i + j � 2, may, due to nonlinearities, become close to combinations
of forcing frequency and natural frequencies (Bryant 1989; La Rocca et al. 1997;
Faltinsen & Timokha 2001). This causes amplification of corresponding higher
modes. The occurrence of such a combinatoric (secondary) resonance in steady
solutions is easily quantified for infinitesimal ε by analysing the nonlinear structure
of the infinite-dimensional modal system (2.1). Assuming the primary resonance
σ ≈ σ0,1 = σ1,0 and using a Fourier representation of periodic solutions we deduce the
dominating harmonics cos(Nσt) and sin(Nσt) in βi,j (t), i + j = N � 1. The secondary
resonant amplification of one of these harmonics with i + j � 2 is associated with the
following two conditions:∣∣∣∣ σ

σ1,0

− ii,j

∣∣∣∣ � 1,

∣∣∣∣ σ

σ1,0

− 1

∣∣∣∣ � 1, (3.1)

to be fulfilled simultaneously with ii,j = σi,j /(Nσ1,0).
The smallness in the inequalities (3.1) should be considered in an asymptotic

scale depending on ε. Calculations based on the finite-depth dispersion relationship
for σi,j show that ii,j �= 1 for i + j � 2. In particular, ii,j < i1,1 = 0.614 . . . < i2,0 =
i0,2 = 0.73 . . . , i + j � 3 for h =0.5. Conditions (3.1) can therefore only be satisfied
either in the limit h → 0 (shallow fluid sloshing) or for finite h as ε increases. This
is explained by Faltinsen & Timokha (2001) (for two-dimensional sloshing in a
rectangular tank): growing ε increases the scaling for inequalities in (3.1) so that the
effective resonant frequency domains 1 − δ1 <σ/σ1,0 < 1 + δ1, i2,0 − δ2 <σ/σ1,0 < i2,0 +
δ2 and i3,0 − δ3 <σ/σ1,0 < i3,0 + δ3 overlap beginning from a still small, but non-
infinitesimal ε. Two-dimensional analysis shows that the overlapped effective domain
should always include the frequency range i2,0 < σ/σ1,0 < 1.

Experiments in Part 1 were done with finite h and relatively small ε. They detected
amplification of the higher modes only for three-dimensional waves and only in
a narrow zone around the primary resonance σ/σ1,0 = 1. Two-dimensional sloshing
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phenomena were consistent with the Narimanov–Moiseyev prediction in the domain
mentioned, i2,0 <σ/σ1,0 < 1. This means that the two previous approaches based on
either an increasing ε or a decreasing h become inapplicable in this case. We propose
an alternative approach to quantify the amplification due to the secondary resonance
phenomena for steady-state motions.

The analysis of steady solutions starts with the original asymptotics

σ 2
1,0

σ 2
− 1 = O

(
ε2/3

)
. (3.2)

It restricts the forcing frequency and leads to the asymptotic solution (see (3.8) from
Part 1)

β1,0 = A cos σ t + Ā sin σ t + o
(
ε1/3

)
, β0,1 = B̄ cos σ t + B sin σ t + o

(
ε1/3

)
, (3.3a)

β2,0 = p0(A
2 + Ā2) + h0(A

2 − Ā2) cos 2σ t + 2h0AĀ sin 2σ t + o(ε),

β0,2 = p0(B̄
2 + B2) + h0(B̄

2 − B2) cos 2σ t + 2h0B̄B sin 2σ t + o(ε),

β1,1 = p1(AB̄ + ĀB) + h1(AB̄ − ĀB) cos 2σ t + h1(ĀB̄ + AB) sin 2σ t + o(ε),


 (3.3b)

where steady amplitudes A, Ā, B̄ and B are of O(ε1/3).
The coefficients p0 and p1 are always of O(1) while h0 and h1 are proportional to

1/(σ 2
2,0/σ

2 − 4) and 1/(σ 2
1,1/σ

2 − 4), respectively (see expressions on p. 13 of Part 1).
This makes h0 and h1 infinite under the secondary resonance condition, namely when
σ/σi,j → ii,j , i + j =2. If h0 and h1 are still of O(1), equations (3.3b) show that the
second-order modal functions β2,0, β0,2 β1,1 are formally proportional to ||β1,0, β0,1||2.
Here ||β1,0, β0,1|| is a norm of β1,0 and β0,1, which by accounting for the dominating
asymptotic contribution from A, Ā, B̄ and B can be expressed as

||β1,0, β0,1|| =
√

A2 + Ā2 + B2 + B̄2. (3.4)

Since A, Ā, B, B̄ vary along the response curves (see figures 5–9, 11, 12 in Part 1),
the magnitude of the second-order modal functions β2,0, β0,2 β1,1 depends on the type
of steady solution and σ/σ0,1. A simple asymptotic analysis based on (3.3b) and the
structure of the coefficients h0 and h1, gives the following sufficient and necessary
condition:

Di,j (σ/σ1,0) =

∣∣∣∣
(

σi,j

(i + j )σ

)2

− 1

∣∣∣∣/||β1,0, β0,1|| = O(1), i + j = 2 (3.5)

for steady solution (3.3b) to be comparable with the norm ||β1,0, β0,1||. Otherwise,
(1.2) and (3.2) lead to Di,j = O(ε−1/3), i + j =2.

Condition (3.5) depends on both the frequency domain and the type of steady-
state wave motions and makes it possible to quantify secondary resonance for a
fixed ε. We give some calculations associated with the experimental results reported
below (longitudinal forcing, h = 0.5, ε = 0.00817) in figure 1. Since i2,0 = 0.73 . . . and
i1,1 = 0.614 . . . represent relatively close values for the asymptotic scale ε1/3, the graphs
for D2,0 and D1,1 are almost identical and we present only results for D2,0. Figure 1
contains three types of branches representing possible stable steady-state solutions:
two sub-branches (solid lines) correspond to planar waves, the dashed line shows
swirling waves and the dotted line represents stable ‘square’-like (diagonal) fluid
motions. Under certain circumstances, the values of D2,0 on the solid lines are
relatively large and do not satisfy (3.5). This means that the modal system in Part 1
based on Moiseyev’s asymptotics (1.2) is applicable for planar waves. In contrast, it is
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Figure 1. Asymptotic estimates of D2,0 defined in (3.5) versus σ/σ1,0 for longitudinal
horizontal forcing with ε = 0.00817 and h = 0.5. D2,0 are calculated for planar (solid lines),
swirling (dashed) and ‘square’-like (dotted) stable steady solutions classified in Part 1. Asym-
ptotic condition D2,0 =O(1) along the branches implies that the modal function β2,0, β0,2, β1,1

should be of the order of the primary modal functions β1,0 and β0,1. This condition is satisfied
for swirling and ‘square’-like, but not planar waves.

likely that D2,0 = O(1) on the branch corresponding to the stable swirling and ‘square’-
like waves. This implies that β2,0, β0,2 and β1,1 (D1,1 ≈ D2,0 in calculations) disagree
with (1.2) for these three-dimensional regimes. Since condition D2,0, D1,1 = O(1) leads
to βi,j ∼ β0,1 ∼ β1,0 for i + j =2, at least five modes βi,j , i + j � 2, should have the
same lowest order.

The asymptotic procedure quantifying possible amplification of the modes i + j � 3
can be extended recursively starting from the estimate (3.5) made for N =2. A general
structure of such a condition for the mode i, j takes the following form:

Di,j (σ/σ1,0) =

∣∣∣∣
(

σi,j

(i + j )σ

)2

− 1

∣∣∣∣/||βl,m|| = O(1), (3.6)

where ||βl,m|| is a new norm, which has to include contributions from all the lowest-
order modal functions βl,m, l + m � N . This is an analytically tedious task, even for
i + j = 3. In this case, the derivation of explicit expressions for (3.6) needs asymptotic
periodic solutions of the original free boundary problem, where the five lowest modes
(βi,j , i + j � 2) are of the same, dominating order. This problem could be the subject
of a new publication.

3.2. Secondary resonance asymptotics

The probability for higher modes to be strongly amplified implies that the earlier
scheme based on (1.2) is limited to a qualitative character for the three-dimensional
waves. A new modal ordering is needed, in which some of the higher modes have
the lowest order. Since quantifications of the amplification for βi,j , i + j = N , are
approximately the same for a fixed N , a selection of dominating modes can be made
with the condition i + j � N .

Let us assume N � 2 and consider βi,j (t) = O(εχ1 ), (χ1 < 1), i + j � N in the lowest
asymptotic order. The secondary resonance condition should in a similar way as the
Moiseyev detuning (3.2) satisfy the relationships (σi,j /((i+j )σ ))2−1 =O(εχ2 ), (χ2 < 1).
Matching the lowest-order terms in the modal system (2.1) to O(ε) leads to
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χ1 = χ2 = 1/2, i.e.

βi,j = O
(
ε1/2

)
,

(
σi,j

(i + j )σ

)2

− 1 = O
(
ε1/2

)
, i + j � N,

βi,j = O(ε),

(
σi,j

(i + j )σ

)2

− 1 = O(1), N + 1 � i + j � 2N.




(3.7)

It is very important to note that (3.7) is not applicable for N = 1. Its usage gives in
that case only a linear approximation of dominating β0,1 and β1,0 and the matched
χ1, χ2 should be consistent with the Narimanov–Moiseyev ordering. Accounting for
(3.7) in (2.1) and keeping terms of O(ε) leads to a second-order asymptotic modal
system, where the third-order polynomial terms at d

2,(i,j )
(a,b),(c,d),(e,f ) and t

1,(i,j )
(a,b),(c,d),(e,f )

in (2.1) become of o(ε) and may be omitted. The second-order system includes
nonlinearly coupled dominating modal functions βi,j , i + j � N , while the driven
modal functions βi,j , N +1 � i +j � 2N , are linear themselves, but nonlinearly excited
by the dominating modes.

3.3. Adaptive modal approach

Although the second-order asymptotic modal systems based on (3.7) are easily
derivable, they cannot be implemented in the sloshing analysis. The first problem
is that conditions (3.5) and (3.6) quantifying the number N are of asymptotic nature
and the exact value of N is in practice not clearly determined. Even very small changes
in forcing frequency and amplitude, or a passage to transient waves can affect N .
Further, the different asymptotic assumptions for different types of waves should be
captured, e.g. planar waves should be based on (1.2) while three-dimensional steady
solutions require (3.7). Since the asymptotic modal system should be used for both
transient and steady-state conditions, a switch between those types of wave motions
must be handled. An adaptive scheme is therefore needed. In order to keep the
necessary nonlinear terms in (2.1) required by both asymptotics (1.2)) and (3.7), the
adaptive asymptotic modal system must include the terms needed by the relationships

βi,j = O
(
ε1/3

)
, i + j � N ; βi,j = O

(
ε2/3

)
, N + 1 � i + j � 2N,

βi,j = O(ε), 2N + 1 � i + j � 3N.

}
(3.8)

Note, that although the two asymptotics (3.7) and (3.2) + (1.2) include the
relationships for σ , the derivation of the adaptive modal systems, as it occurs in
the modal modelling, does not link σ and ε (see the special discussion on this by
Faltinsen et al. 2000; Faltinsen & Timokha 2001). The adaptive modal system based
on (3.8) is easily derivable from (2.1) by accounting for (3.8) and keeping the terms
of O(ε). It has N (N + 3)/2 dominating modes and the size dimension 9N (N + 1)/2.
Increasing N yields a series of ‘embedding’ adaptive modal systems, where the case
N = 1 corresponds to the modal theory considered in Part 1. When N � 3, all the nine
lowest modes from the model in Part 1 are considered by the adaptive modal system
to be dominating ones. However, if the actual steady-state solutions are consistent
with the asymptotic ordering of Part 1, their numerical approximation obtained with
the adaptive system for N � 3 should give an error o(ε) which is negligible in our
asymptotic analysis. When accounting for another type of solution based on (3.7), this
point gives a ‘convergence’ criterion for the adaptive modal modelling which suggests
two steps: (i) The condition (3.5) indicates amplification of the modes i + j = 2 and
a switch to the adaptive models with N � 2. (ii) The smallness of the difference (in
scale ε1/2) between numerical results of the adaptive modal systems obtained with N
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and N + 1 indicates that the actual dimension of the dominating modes from (3.7)
is N .

The requirement to test different N � 2 may cause numerical stiffness for subsystems
corresponding to the higher modes. The problem can be slightly relaxed because the
modal functions βi,j , 2N+1 � i+j � 3N , are o(ε) for both asymptotics with increasing
N and can often be omitted in the numerical analysis. However, βi,j = O(ε), N+1 � i+
j � 2N , are theoretically unavoidable for steady analysis and play an important role
for transient regimes. Calculations of transient waves without those higher-order
modal functions sometimes gave results in numerical tests that are far away from
reality and even resulted in numerical instability. The physical explanation is that,
while the lowest-order modes determine a global ‘smooth’ fluid flow, the higher-
order modes are responsible for modelling short steep waves. These waves always
appeared in the experiments and cannot be excluded from consideration. However,
the experiments also confirmed that these waves have a very short life due to various
dissipative factors including probably surface tension, local breaking and so on.

Mathematically, the structure of the modal equations for βi,j , N + 1 � i + j � 2N ,
is as follows:

β̈i,j + 2αi,j β̇i,j + σ 2
i,jβi,j = F2(βl,m), N + 1 � i + j � 2N, 1 � l + m � N. (3.9)

These equations are linear in βi,j (t), N + 1 � i + j � 2N , and the right-hand side F2

is a quadratic function of the dominating modal functions and their derivatives. The
modal functions βi,j (t), N + 1 � i + j � 2N , are also linearly present in the equations
for these dominant modes βl,m(t), l + m � N . Due to the linear structure of (3.9),
the high-frequency components in solutions of (3.9) will then depend exclusively on
either initial conditions or numerical time integration errors. Dissipation rates in the
higher equations (3.9) are not predicted well by (2.4) + (2.5) and therefore their usage,
especially for transients, may result in numerical solutions of βi,j (t), N+1 � i+j � 2N ,
with magnitudes larger than magnitudes of dominating modes and lead to conflicts
in our asymptotic scheme. Thus, two principal problems of the adaptive scheme are
to find a strategy for damping of the higher-order modes and to estimate the initial
conditions.

When the steep wave profiles and local breaking waves do not occur, dissipative
features of the hydrodynamic system are mostly related to viscous damping in
the dominating (lowest-order) modes (Hill 2003). However, the values (2.4) + (2.5)
represent only a lower bound of dissipation for higher modes. This point and the
previously mentioned numerical problem for equations (3.9) lead to the following
strategy for handling the damping: (i) the prediction (2.4)–(2.5) is only used for the
dominating modes i + j � N ; (ii) the second-order modes i + j � N + 1 are critically
damped, i.e. αi,j = σi,j ; (iii) the tested dimensions are restricted by N � 2.

Physically, the strategy provides the viscous damping rates for the lowest-order
modal functions and guarantees that at least the nine lowest modal functions
appearing in Part 1 are damped with (2.4) and (2.5). Short waves due to the second-
order modal functions are damped with the much larger critical rates. The error
caused by using the critical damping as an estimate affects only the higher-order
contribution of O(ε) in steady-state wave regimes. Indeed, when periodic solutions
are consistent with the Narimanov–Moiseyev asymptotics, the critical damping is
applied to the modes βi,j (t) � O(ε), i + j � 4, which either are absent in the lower-
order equations or contribute o(ε) to them. If steady-state solutions are consistent
with (3.7), the critical damping terms appear only in the equations of the second-order
modes that are of O(ε) and contribute only o(ε) to the equations of the dominating
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Figure 2. Positions wi of the wave probes (tank seen from above). Measurements in mm.

modes i + j � N . The maximum error in approximating the steady-state motions
is therefore of O(ε). Another problem is associated with the damping rates (2.4)
and (2.5) in the equations of the lowest-order modes. Since they provide only a
lower bound of the actual dissipation, the use of (2.4) + (2.5) prevents us from testing
large-dimensional adaptive systems. Our computational experiments show that modal
systems are numerically stiff for N � 6 for three-dimensional resonant waves related
to our experimental series.

While our damping strategy does not influence the lowest-order component of
steady-state solutions, it may in general fail for transient waves, when the actual
dissipation of lower/higher modes is re-distributed in a different way and other
physical phenomena such as local breaking may matter. This motivated us to focus
also on transient regimes in the validation of this approach.

As shown in Part 1, three-dimensional resonant sloshing in a square-base basin
is characterized by multiple steady solutions for the same forcing frequency. Initial
conditions therefore play an important role in determining both the actual steady-
state motion and transient phase. A particular example is that zero initial conditions
for longitudinal forcing lead always to planar motions and the transition to swirling
and chaotic motions cannot be described. Our strategy for finding appropriate initial
perturbations in the system uses the experimental measurements at wave probes 3
and 5 (see figure 2) during approximately two times the largest natural periods prior
to forced oscillations of the tank. The small wave elevations can then be described by
linear theory and a Fourier analysis in this time range provides estimates of the initial
conditions for βi,j . Numerical experiments showed that the estimates of the higher
modes were sufficiently small and do not affect the behaviour during forced sloshing.
Only initial perturbations of the two lowest modes β1,0 and β0,1 matter, while zero
initial conditions may be accepted for the higher modes.

4. Model tests and validation
4.1. Experimental setup and observations

The model tests were performed in a cubic tank with dimensions 0.6 m. The tank
structure was made of 20 mm thick acrylic with a steel frame added for support. The
weight of the empty tank and frame is 124 kg. The measurements are within 1 mm
of the given values, the tank model is horizontal within 0.5◦. The instrumentation
consists of wave probes, force gauges, accelerometers, steering system velocity feedback
monitoring and a digital video camera. Only the two wave probes labelled w3 and
w5 in figure 2 are used in this study. Two lengths of parallel wire separated by 10 mm
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Figure 3. Longitudinal forcing with h = 0.5, ε = 0.00817. Comparison between experimental
data, theoretical prediction from Part 1 and results of the adaptive modal theory.

are stretched vertically between the tank bottom and roof. Four force gauges referred
to as guide towers support the frame enclosing the tank model. Each guide tower
includes three strain gauges to facilitate force measurements along all three axes. The
accelerometers are aligned with the x- and y-axes and are situated on top of the tank
model. These are used to measure the exact tank motion, and are a supplement to the
measured servo-motor velocity from the feedback steering system. Most test runs last
5 minutes. The data analysis is performed in Matlab. A filtering frequency of 5 Hz
is applied for both forces and accelerations when accelerometer readings are used
to calculate the horizontal forces, excluding the inertia force due to tank mass. The
peak period from a spectral analysis of the tank motion provides the exact forcing
frequency. A special damping device was used to reduce the time between each test. A
horizontal mesh of metal was lowered onto and through the free-surface to suppress
the free-surface motion.

Pure periodic waves were not detected even after 270–350 forcing periods. Both
wave elevation and hydrodynamic force amplitudes demonstrated fluctuations of up
to 5–30% (depending on the type of wave regime). The experiments re-confirmed
conclusions in Part 1 including the classification of nearly-periodic waves. The
steepness of the wave pattern and local breaking phenomena were predominating for
three-dimensional regimes. They appeared as sheets of water (run-up) being ejected
up the tank walls as well as more localized vertical jets of a very limited spatial
extent. The run-up has a strong three-dimensional flow character even when the flow
at a small distance from the walls is mainly two-dimensional. The thin sheet of water
ejected upwards collapses, scatters and the water falls down on the free surface like
‘rain’ covering a small part of the free surface area. The run-up process may end
the pure two-dimensional nature of the flow and trigger three-dimensional flows like
diagonal or swirling waves. Such a ‘rainfall’ was repeated each 1/4 of the forcing
period for nearly periodic waves, but involved statistically different fluid volumes.

4.2. Longitudinal forcing

Figure 3 shows an experimental and theoretical classification of wave regimes after
the transient phase for h = 0.5, ε =0.00817. While the theoretical results in Part 1
are obtained analytically from the corresponding bifurcation analysis, the frequency
domains of the adaptive systems are determined by looking at the numerical solutions
of the approximate equations. Comparing the results from the Part 1 system, we find
qualitative agreement except for σ/σ1,0 = 0.9455, where the experiments show chaotic
motions instead of planar waves. Moreover, except for the cases with σ/σ1,0 = 0.9455
and 1.037, the planar regimes are in good quantitative agreement with Part 1 for
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both wave elevation near the walls and the hydrodynamic forces. This is so even
for σ/σ1,0 = 0.657 and 0.747, which are close to i2,0 = 0.73 . . . (the prediction of the
secondary resonance in the asymptotic limit ε → 0). This resonant zone is probably
too narrow for our ε. In contrast to Part 1, the results by the adaptive model agree
well for all the experimental series.

Since the experimental series with three-dimensional wave regimes demonstrate
significant local phenomena (see § 4.1) after 8–12 forcing periods and there is not a
clear theoretical strategy in dealing with perturbations caused by local phenomena, the
validation was divided into two cases: (i) a description of the initial transient phase,
when these perturbations still do not influence the sloshing and (ii) a classification
of nearly steady-state waves by performing very long time calculations. The number
of dominating modes in the adaptive scheme was detected to be i + j � N = 3 to
handle both transient and nearly periodic waves. Using a larger N up to N =6 gave
small differences (up to 1–4%). The initial conditions strategy confirmed in general
its applicability for the adaptive modal systems. While the numerical results for N � 3
were not sensitive to small changes in the initial conditions, the modal system in Part 1
led to numerical breakdown for the experimental cases observing three-dimensional
motions. Only long-time-domain simulations (200–300 forcing periods) with N =6
showed a slightly increasing numerical error caused probably by stiffness. A possible
reason is that our linear viscous estimate of the damping (2.4), (2.5) for βi,j , i + j =6
does not reflect the real dissipation in the system.

The adaptive method computes N = 3 for non-swirling waves with σ/σ1,0 =
0.945, 0.9608 and 1.037 and generally agrees well with experiments for both the initial
transient phase (approximately 15–20 forcing periods) and nearly steady regimes.
Extensive comparisons suggested that future research should consist of modelling
random-like perturbations generated by the local phenomena. Neglecting them in
the numerical analysis does not allow quantitative theoretical predictions in the
‘intermediate’ transient phase, namely immediately after the initial transients.

Figure 4 shows results for σ/σ0,1 = 1.037. While numerical results agree well with
experiments for both initial transients (for approximately t � 12 s in figure 4a–d) and
nearly steady waves (after approximately 100 s), the intermediate time range exhibits
clear disagreement. Since the local phenomena affect elevations near the walls, we were
able to show in figure 4(e, f ) how they (see the ellipses) drive the discrepancy between
measured and computed elevations after 12 s. Another series with σ/σ0,1 = 0.9608 is
characterized by the predominating character of the random-like perturbations. The
transition to chaotic motions was in this case associated with a short-life swirling.
Although the calculations in figure 5(a–d) capture qualitatively these transients after
10–12 s, the initial condition strategy always results in the transient swirling in the
opposite direction to those observed in experiments. This can be established by
studying the shift of the peaks for the wave elevations in the time domain 15–26 s.
The reason is that the initial conditions in this case are very small relative to those in
other experimental series. While the larger initial conditions imply a predominating
influence of the initial perturbation on the initial transient phase, the measured
elevations at probes 3 and 5 in the last case were comparable with the static capillary
meniscus at the wave probes and both the surface tension and the local phenomena
may be important for the initial transients.

Special effort was made to improve the theoretical prediction at σ/σ0,1 = 0.9455,
where Part 1 disagreed with experiments. While N = 1 and 2 always led to two-dimen-
sional sloshing, the adaptive method with N � 4 confirmed the ‘chaotic’ character of
the sloshing in very long time series (we tested up to 1000 s). The final results for
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Figure 4. Transient waves. Longitudinal forcing with h = 0.5, ε = 0.00871 and σ/σ1,0 = 1.037.
The solid line presents the calculations by the adaptive modal system and the dashed line
gives the measured data for longitudinal/transversal forces (a, b) and wave elevations at wave
probes 3 and 5 (c, d) (see figure 2). (e, f ) Zoomed time history after t =14 s, which confirms the
presence of the short-time perturbations, most probably caused by local near-wall phenomena.
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Figure 5. The same as in figure 4(a–d), but with σ/σ1,0 = 0.9608.
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Figure 6. The same as in figure 4(a–d), but showing the transition to ‘chaotic’ wave motions
for σ/σ1,0 = 0.945.

the three-dimensional transients are also illustrated in figure 6(a–d). The agreement
is especially good for the forces, but the wave elevation after approximately 10 s is
affected by the local phenomena (§ 4.1).

Theoretical results for transient waves leading to swirling regimes are also affected
by the local phenomena, but agree well with experimental measurements beginning
from N = 3. This is exemplified for σ/σ0,1 = 1.009 in figure 7(a–f ). Note, that
although nearly steady-state swirling regimes are identified in the two experimental
cases detecting the swirling regimes, the measurements do not show pure periodic
waves. The measurements at wave probes 3 and 5 were always affected by random-
like fluctuations of up to 10–30% of the maximum wave elevations. Since the
hydrodynamic forces depend basically on the dominating modes, the measured
hydrodynamic forces in these cases demonstrate more clearly a nearly periodic
behaviour. We performed some additional numerical studies of long time series
using our adaptive scheme to compare theoretical and experimental results in the
steady-state regimes. Some numerical results are illustrated in figures 8 and 9.

The first example in figure 8 confirming applicability of our adaptive scheme is
for σ/σ0,1 = 1.009 (the last part of the experimental time history was studied). The
beating in the numerical results did not die out even after 1000 forcing periods. An
explanation is that the predictions of linear viscous damping in the lowest-order modes
do not account for the actual dissipation in this case. An opposite physical situation
related to σ/σ0,1 = 0.991 is presented in figure 9(a–d). Although the applicability of
the adaptive asymptotics is also justified in this case and short transients led to nearly
periodic solutions that agreed with experiments (see figure 9a, b), the comparison for
larger t in figure 9(c, d) demonstrates a disagreement. The discrepancy did not depend
on the value of N � 3. The damping is probably estimated well, but the random-like
perturbations play a much more important role. A speculative study of this hypothesis
was made by perturbing some higher modal function βi,j (t) = o(ε), N +1 � i +j � 2N

at an instant t = t0. Although these perturbations were lower than the error of our
asymptotic scheme, they led after short transients (up to 3–5 forcing periods) to a
situation similar to that in figure 9 (a, b).
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Figure 7. The same as in figure 4, but showing the transition to swirling waves with
σ/σ1,0 = 1.009. (c, d) Zoomed time history after t = 12 s, which confirms the presence of
random-like perturbations caused by the local phenomena (§ 4.1).
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Figure 8. The same as in figure 7(a, b), but for nearly periodic waves.

4.3. Diagonal forcing

Figure 10 shows a comparison of wave regimes after the transient phase predicted by
adaptive theory, experiments and the theory in Part 1 in the case of diagonal forcing.
The theory in Part 1 gives in many cases satisfactory predictions. However, comparing
experimental data and predictions from Part 1 shows unsatisfactory predictions when
σ/σ0,1 = 0.929, 0.94575, 0.973, 1.022 and 1.115. The adaptive approach improved
the theoretical results and confirmed indirectly that amplification of higher modes
may affect the qualitative classification of steady regimes relative to the Narimanov–
Moiseyev scheme (Part 1; Faltinsen et al. 2004). The numerical results are in especially
good agreement with the experiments showing stable diagonal sloshing. An example



Three-dimensional sloshing in a square-base basin. Part 2 213

(a)

–300

–200

–100

0

100

0

200

300

30 35 40 45 50 55

L
on

gi
tu

di
na

l f
or

ce
 (

N
)

–300

–200

–100

100

200

300

L
on

gi
tu

di
na

l f
or

ce
 (

N
)

0

0

–300

–200

–100

100

200

300

T
ra

ns
ve

rs
al

 f
or

ce
 (

N
)

(b)

(c) (d )

276 278 280 282 284 286 288 290
t (s)

276 278 280 282 284 286 288 290
t (s)

–300

–200

–100

100

200

300

30 35 40 45 50 55

T
ra

ns
ve

rs
al

 f
or

ce
 (

N
)

Figure 9. The same as in figure 8, but for σ/σ0,1 = 0.991, shown in (a, b) at an early time.
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illustrating calculated and measured transient waves in the initial phase is presented
in figure 11(a–d).

Experimental swirling waves for σ/σ1,0 = 1.022 show a repeated switching of the
rotation direction. This is a kind of ‘beating’, which was not observed for longitudinal
forcing, but it is well known from experimental studies on swirling motions in circular
and spherical tanks. In particular, Abramson (1966, p. 99) writes on swirling regimes in
a spherical tank: ‘. . . The motion is even more complicated as a type of ‘beating’ also
exist; the first antisymmetric liquid-sloshing mode first begins to transform itself into a
rotational motion increasing in angular velocity in, say, the counterclockwise direction,
which reaches a maximum and then decreases essentially to zero and then reverses
and increases in the clockwise direction, and so on alternatively.’ Time recordings
of the wave elevations and hydrodynamic forces in square-base tank show that, in
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Figure 11. Measured (dashed line) and calculated (solid line) wave elevations (a, b) and
hydrodynamic forces (c, d) by the adaptive modal system for the initial transient phase in the
case of diagonal forcing with σ/σ1,0 = 1.115, h= 0.5, ε =0.00871.
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Figure 12. Measured (a, c) and calculated (b, d) wave elevations for σ/σ1,0 = 1.022.

contrast to swirling regimes in spherical tanks, the switching is most probably affected
by random perturbations occurring due to the local phenomena (§ 4.1). Although our
adaptive modal scheme does not account for these perturbations, it captures the
switching. The numerical perturbations are due to small errors in approximating
higher modes. While the simplest modal system in Part 1 does not capture this
phenomenon at all (it simply fails for this forcing), the adaptive model describes it
qualitatively well. Figure 12 gives typical measured and calculated ‘beating periods’.

Another set of physical phenomena is associated with the experimental case
σ/σ1,0 = 0.973. Experiments clearly demonstrate a swirling wave of fixed rotation
direction with only small ‘beating’. Since the forcing frequency belongs to a narrow
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Figure 13. Calculated regular beating by the adaptive modal system. Wave elevations at
probes 3 and 5 (see figure 2) in a test case of diagonal forcing with σ/σ1,0 = 0.973, h= 0.5,
ε = 0.00871.

zone between two Hopf bifurcation points (Part 1 p. 25), the swirling wave is theoreti-
cally unstable for this forcing frequency in the framework of the Narimanov–Moiseyev
asymptotics, which predicts here only stable steady-state diagonal wave of large
energy (amplitude). However, as remarked in Part 1 on p. 26, even a relatively small
dissipation might stabilize the swirling waves. We performed numerical studies of this
case by use of the adaptive modal scheme to try to estimate N , initial conditions and
even to change them speculatively. However, although the initial transient phase has
been quantified well, significant beating in numerical solutions made it impossible to
identify the actual periodic motions as precisely as in the experiments. Depending
on initial conditions long-time simulations represented surprisingly regular structures
(see examples in figure 13a, b). Although the numerical periodic solutions were not
found, the calculated series were classified as a swirling wave with constant direction
of rotation. This is illustrated in figures 13(c, d) by comparing the computed wave
elevation at wave probes 3 and 5. They show clearly a fixed phase difference of one-
fourth of the excitation period between peaks at probes 3 and 5 (see the identification
method in Part 1).

Finally, the experiments with σ/σ1,0 = 0.94575 indicate clearly ‘chaotic’ surface wave
motions, while the theoretical prediction by the Narimanov–Moiseyev asymptotics
consists of two stable steady-state diagonal waves (of lower and smaller amplitudes)
and a stable swirling regime (in fact, two more regimes, because of two possible
direction of rotation). Trying to identify the actual steady solution with our adaptive
modal scheme and suitable initial conditions always showed a diagonal wave of lower
amplitude. This stable regime has lower energy than other possible stable regimes
and our calculations lead to this regime with sufficiently small initial conditions.
‘Chaotic’ waves in the experiments are probably caused by additional perturbations
in the system occurring due to local phenomena (§ 4.1). Since these perturbations are
not accounted for by our model, they can only be modelled by increasing the initial
conditions relative to our initial conditions strategy. Doing this by a factor 3 we
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Figure 14. The same as in figure 11, but for σ/σ1,0 = 0.929.

found a ‘chaotic’ resonant wave response, which did not die out for very long time
(up to 3000 forcing periods were tested). The importance of random-like perturbations
during sloshing is also demonstrated for the experimental case σ/σ0,1 = 0.929. Here
both the experiments and our adaptive theory identify two steady-state diagonal
solutions. However, the experiments showed the diagonal wave of larger amplitude,
while calculations based on predicted initial perturbations led to diagonal waves of
lower amplitude. Only large increases in initial perturbations relative to experimental
estimates and usage of the adaptive scheme (the Narimanov–Moiseyev asymptotics
simply fails to compute this case) made it possible to obtain the same nearly steady-
state regime as in the experiments. Theoretical and experimental results agree well
(see the comparison in the last seconds of the experimental test in figure 14a–d). The
agreement is better for hydrodynamic forces in figure 14(c, d), while wave elevations in
figure 14(a, b) show significant effects of random perturbations due to local breaking
at the corners.

5. Conclusions
We suggested in Part 1 that the discrepancy between experiments and theoretical

asymptotic results of steady-state resonant sloshing in a square-base tank with
finite fluid depth may be due to amplification of higher modes caused by secon-
dary resonance. This hypothesis was based on both experimental observations
of steep (short) three-dimensional wave profiles accompanied by numerous local
breaking phenomena and theoretical quantification of a similar discrepancy for
two-dimensional resonant sloshing in a rectangular tank occurring for relatively
large sway/roll forcing amplitude (Faltinsen & Timokha 2001). Further analysis of
experimental data showed that the concept of secondary resonance in Faltinsen &
Timokha (2001) is not applicable in our case. The present paper gives a new
theoretical analysis of the amplification by proposing a new version of an adaptive
modal approach capturing a selective (depending on the type of motions) secondary
resonance in higher modes. The theoretical basis of the adaptive approach is a
generic infinite-dimensional modal system which played an auxiliary role in the
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previous paper. New experimental studies have been done to re-confirm experimental
conclusions of the previous paper and provide longer time records of measure-
ments.

The new concept of secondary resonance and quantification of amplification of
higher modes is based on comparing the contributions from second-order and
dominating modes. It is developed for steady-state motions, but one part of the
validation is associated with transient regimes. An exact analytical result (necessary
condition (3.5)) is derivable only for the second-order modes in terms of the model
in Part 1, i.e. βi,j , i + j = 2. Since the asymptotic condition (3.5) depends on the
actual lowest-order contribution varying along the response curves, the amplification
of βi,j , i + j =2, depends strongly on the type of steady wave regime. This clarifies
the selective effect for higher modes observed in the experiments and makes it
possible to quantify the actual frequency domain where the third-order Narimanov–
Moiseyev asymptotic scheme becomes invalid and the number of dominating modes
increases. This needs a new asymptotic ordering matching the second-order terms
to O(ε). It is straightforward, but analytically very tedious, to derive the asymptotic
conditions analogous to (3.5) for i + j � 3. Another problem consists of combining
two asymptotics to describe planar waves (in the framework of the Narimanov–
Moiseyev ordering) and three-dimensional steady motions (with the new ordering)
simultaneously by a single modal system. This is an important problem for transient
waves, implying a possible switch between different wave regimes. The present paper
proposes an adaptive scheme allowing detection of the actual number of dominating
modes and derives a finite-dimensional model including the nonlinear terms required
by both asymptotics. The existence of two different asymptotics for the same forcing
parameters requires further analytical studies. Our main focus was to validate our
theoretical quantification of amplification and prove the physical hypothesis in Part 1.
Several cases were described where the simplest modal system in Part 1 failed, but
the adaptive modal scheme predicts the steady-state motions well and agrees with
measured data. Although our theory has been confirmed by comparing with earlier
and new experiments, the adaptive scheme, and the modal methods in general, are
found to be limited by their ability to model local phenomena and also damping of
higher-modes.

The adaptive modal systems need to include realistic damping to describe transition
to steady-state motions. Our way of approximating the damping assumes linear
viscous damping rates for the dominating modes and critical damping for the second-
order modes. The critical damping in the second-order modes influences only higher-
order components of steady-state motions solutions and may affect only some special
sort of transient. Intuitively, it is responsible for short-life steep wave patterns and
dissipation due to overturning waves. In contrast, the linear viscous damping rates
imply a lower limit of dissipation in the lower-order modes and may become too
small for large N (βi,j (t), i + j = N ). The error in neglecting dissipation due to local
phenomena for the dominating modes should be studied further. This requires both
an estimate of the energy loss due to breaking waves and its redistribution between
the natural modes. However, both our damping strategy and even the higher modes
amplification may imply the greatest effect where the full formulation associated with
inviscid potential flows breaks down anyway. With increasing forcing amplitudes we
reach the situation when many modes should formally be considered of dominating
order, but many of them are affected by various kinds of damping including local
phenomena. Such wave motions require not only other methods, but probably a
physical formulation that allows for a rotational flow.
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While the conclusion regarding damping is similar to that made by Faltinsen &
Timokha (2001) for two-dimensional waves, a new finding is that local phenomena
cause random-like perturbations. Since in many cases at least two steady-state
solutions exist (an example is swirling with opposite rotation directions), these
perturbations can change the stability features of steady-state sloshing. Experiments
show that they may cause transition to chaotic motions in the frequency domain
where several stable steady-state solutions exist. All these cases are captured by our
adaptive modal scheme however, but a strategy is needed for modelling these random
perturbations over long-time simulations. Perturbation effects of local phenomena
need to be addressed by a modal method and any other (including CFD) scheme for
three-dimensional sloshing in a prismatic tank.
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